Parameter Uniform Numerical Method for Singularly Perturbed 2D Parabolic PDE with Shift in Space

نویسندگان

چکیده

Singularly perturbed 2D parabolic delay differential equations with the discontinuous source term and convection coefficient are taken into consideration in this paper. For time derivative, we use fractional implicit Euler method, followed by fitted finite difference method bilinear interpolation for locally one-dimensional problems. The proposed is shown to be almost first-order convergent spatial direction temporal direction. Theoretical results illustrated numerical examples.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts

In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...

متن کامل

A Parameter-uniform Numerical Method for a System of Singularly Perturbed Boundary Value Problems

A parameter-uniform numerical method based on Shishkin mesh is constructed and analyzed for a weakly coupled system of singularly perturbed second order reaction-diffusion equations. A B-spline collocation method is combined with a piecewise-uniform Shishkin mesh. An asymptotic error bound (independent of the perturbation parameter ε) in the maximum norm is established theoretically. To illustr...

متن کامل

High order parameter-uniform discretization for singularly perturbed parabolic partial differential equations with time delay

In this article we study numerical approximation for singularly perturbed parabolic partial differential equations with time delay. A priori bounds on the exact solution and its derivatives, which are useful for the error analysis of the numerical method are given. The problem is discretized by a hybrid scheme on a generalized Shishkin mesh in spatial direction and the implicit Euler scheme on ...

متن کامل

Parameter - uniform numerical methods for a class of singularly perturbed problems with a Neumann boundary condition

The error generated by the classical upwind finite difference method on a uniform mesh, when applied to a class of singularly perturbed model ordinary differential equations with a singularly perturbed Neumann boundary condition, tends to infinity as the singular perturbation parameter tends to zero. Note that the exact solution is uniformly bounded with respect to the perturbation parameter. F...

متن کامل

Parameter - uniform numerical methods for a class of singularly perturbed problems with a

The error generated by the classical upwind finite difference method on a uniform mesh, when applied to a class of singularly perturbed model ordinary differential equations with a singularly perturbed Neumann boundary condition, tends to infinity as the singular perturbation parameter tends to zero. Note that the exact solution is uniformly bounded with respect to the perturbation parameter. F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10183310